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Introduction

The analysis of matrix algorithms frequently requires use of matrix norms.

For example, the quality of a linear system solver may be poor if the
matrix of coefficients is “Dearly singular.”

To quantify the notion of near-singularity we need a measure of distance
on the space of matrices. Matrix norms provide that measure.
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Definitions

Since Rm×n is isomorphic to Rmn, the definition of a matrix norm should
be equivalent to the definition of a vector norm. In particular,
f : Rm×n → R is a matrix norm if the following three properties hold:

f (A) ≥ 0 A ∈ Rm×n, (f (A) = 0 iffA = 0)

f (A + B) ≤ f (A) + f (B) A,B ∈ Rm×n,

f (αA) = |α|f (A) α ∈ R,A ∈ Rm×n.

As with vector norms, we use a double bar notation with subscripts to
designate matrix norms, i.e., ‖A‖ = f (A).
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Definitions (Contd...)

The most frequently used matrix norms in numerical linear algebra are the
Frobenius norm,

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

|aij |2 (1)

and the p-norms

‖A‖p = sup
x 6=0

‖Ax‖p
‖x‖p

. (2)

Note that the matrix p-norms are defined in terms of the vector p-norms
that we discussed in the previous section. The verification that (1) and (2)
are matrix norms is left as an exercise. It is clear that ‖A‖p is the p-norm
of the largest vector obtained by applying A to a unit p-norm vector:

‖A‖p = sup
x 6=0

∣∣∣∣∣∣∣∣A( x

‖x‖p

)∣∣∣∣∣∣∣∣
p

= max
‖x‖p=1

‖Ax‖p.
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Definitions (Contd...)

It is important to understand that (1) and (2) define families of norms-the
2-norm on R3×2 is a different function from the 2-norm on R5×6.

Thus, the easily verified inequality

‖AB‖p ≤ ‖A‖p‖B‖p A ∈ Rm×n, B ∈ Rn×q (3)

is really an observation about the relationship between three different
norms. Formally, we say that norms f1, f2, and f3 on Rm×q,Rm×n, and
Rn×q are mutually consistent if for all A ∈ Rm×n and B ∈ Rn×q we have
f1(AB) ≤ f2(A)f3(B).
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Definitions (Contd...)

Not all matrix norms satisfy the submultiplicative property

‖AB‖ ≤ ‖A‖ ‖B‖. (4)

For example, if ‖A‖∆ = max |aij | and

A = B =

[
1 1
1 1

]
,

then ‖AB‖∆ > ‖A‖∆‖B‖∆. For the most part we work with norms that
satisfy (4).
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Definitions (Contd...)

The p-norms have the important property that for every A ∈ Rm×n and
x ∈ Rn we have ‖Ax‖p ≤ ‖A‖p‖x‖p. More generally, for any vector norm
‖ · ‖α on Rn and ‖ · ‖β on Rm we have ‖Ax‖β ≤ ‖A‖α,β‖x‖α where
‖A‖α,β is a matrix norm defined by

‖A‖α,β = sup
x 6=0

‖Ax‖β
‖x‖α

. (5)

We say that ‖ · ‖α,β is subordinate to the vector norms ‖ · ‖α and ‖ · ‖β.
Since the set {x ∈ Rn : ‖x‖α = 1} is compact and ‖ · ‖β is continuous, it
follows that

‖A‖α,β = max
‖x‖α=1

‖Ax‖β = ‖Ax∗‖β (6)

for some x∗ ∈ Rn having unit α-norm.
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Some Matrix Norm Properties

The Frobenius and p-norms (especially p = 1, 2,∞) satisfy certain
inequalities that are frequently used in the analysis of matrix
computations. For A ∈ Rm×n we have

‖A‖2 ≤ ‖A‖F ≤
√
n‖A‖2 (7)

max
i ,j
|aij | ≤ ‖A‖2 ≤

√
mnmax

ij
|aij | (8)

‖A‖1 = max
1≤j≤n

m∑
i=1

|aij | (9)

‖A‖∞ = max
1≤i≤m

n∑
j=1

|aij | (10)

1√
n
‖A‖∞ ≤ ‖A‖2 ≤

√
m‖A‖∞ (11)

1√
m
‖A‖1 ≤ ‖A‖2 ≤

√
n‖A‖1 (12)
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Some Matrix Norm Properties (Contd...)

If A ∈ Rm×n, 1 ≤ i1 ≤ i2 ≤ m, and 1 ≤ j1 ≤ j2 ≤ n, then

‖A(i1 : i2, j1 : j2)‖p ≤ ‖A‖p (13)

The proofs of these relations are not hard and are left as exercises.

A sequence {A(k)} ∈ Rm×n converges if limk→∞ ‖A(k) − A‖ = 0. Choice
of norm is irrelevant since all norms on Rm×n are equivalent.
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The Matrix 2-Norm

A nice feature of the matrix 1-norm and the matrix ∞-norm is that they
are easily computed from (9) and (10). A characterization of the 2-norm is
considerably more complicated.

Theorem 1.

If A ∈ Rm×n, then there exists a unit 2-norm n-vector z such that
ATAz = µ2z where µ = ‖A‖2.

Proof: Suppose z ∈ Rn is a unit vector such that ‖Az‖2 = ‖A‖2. Since z
maximizes the function

g(x) =
1

2

‖Ax‖2
2

‖x‖2
2

=
1

2

xTATAx

xT x

it follows that it satisfies ∇g(z) = 0 where ∇g is the gradient of g . But a
tedious differentiation shows that for i = 1 : n.
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The Matrix 2-Norm (Contd...)

∂g(z)

∂zi
=

(zT z)
n∑

j=1

(ATA)ijzj − (zTATAz)zi

 /(zT z)2.

In vector notation this says ATAz = (zTATAz)z . The theorem follows by
setting µ = ‖Az‖2.

The theorem implies that ‖A‖2
2 is a zero of the polynomial

p(λ) = det(ATA− λI ). In particular, the 2-norm of A is the square root of
the largest eigenvalue of ATA.

For now, we merely observe that 2-norm computation is iterative and
decidedly more complicated than the computation of the matrix 1-norm or
∞-norm. Fortunately, if the object is to obtain an order-of-magnitude
estimate of ‖A‖2, then (7), (11), or (12) can be used.
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The Matrix 2-Norm (Contd...)

As another example of “norm analysis,” here is a handy result for 2-norm
estimation.

Corollary 2.

If A ∈ Rm×n, then ‖A‖2 ≤
√
‖A‖1‖A‖∞.

Proof: If z 6= 0 is such that ATAz = µ2z with µ = ‖A‖2, then
µ2‖z‖1 = ‖ATAz‖1 ≤ ‖AT‖1‖A‖1‖z‖1 = ‖A‖∞‖A‖1‖z‖1.
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Perturbations and the Inverse

We frequently use norms to quantify the effect of perturbations or to prove
that a sequence of matrices converges to a specified limit. As an
illustration of these norm applications, let us quantify the change in A−1

as a function of change in A.

Lemma 3.

If F ∈ Rn×n and ‖F‖p < 1, then I − F is nonsingular and

(I − F )−1 =
∞∑
k=0

F k

with

‖(I − F )−1‖p ≤
1

1− ‖F‖p
.

P. Sam Johnson Matrix Norms 13/19



Perturbations and the Inverse (Contd...)

Proof: Suppose I − F is singular. It follows that (I − F )x = 0 for some
nonzero x . But then ‖x‖p = ‖Fx‖p implies ‖F‖p ≥ 1, a contradiction.
Thus, I − F is nonsingular. To obtain an expression for its inverse consider
the identity (

N∑
k=0

F k

)
(I − F ) = I − FN+1.

Since ‖F‖p < 1 it follows that lim
k→∞

F k = 0 because ‖F k‖p ≤ ‖F‖kp . Thus,

(
lim

N→∞

N∑
k=0

F k

)
(I − F ) = I .
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Perturbations and the Inverse (Contd...)

It follows that (I − F )−1 = lim
N→∞

N∑
k=0

F k . From this it is easy to show that

‖(I − F )−1‖p ≤
∞∑
k=0

‖F‖kp =
1

1− ‖F‖p
.

Note that ‖(I − F )−1 − I‖p ≤ ‖F‖p/(1− ‖F‖p) as a consequence of the
lemma.

Thus, if ε << 1, then O(ε) perturbations in I induce O(ε) perturbations
in the inverse. We next extend this result to general matrices.
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Perturbations and the Inverse (Contd...)

Theorem 4.

If A is nonsingular and r = ‖A−1E‖p < 1, then A + E is nonsingular and
‖(A + E )−1 − A−1‖p ≤ ‖E‖p‖A−1‖2

p/(1− r).

Proof: Since A is nonsingular A + E = A(I − F ) where F = −A−1E .
Since ‖F‖p = τ < 1 it follows from Lemma 3 that I − F is nonsingular
and ‖(I − F )−1‖p < 1/(1− r). Now (A + E )−1 = (I − F )−1A−1 and so

‖(A + E )−1‖p ≤
‖A−1‖p
1− τ

.

Equation (2.1.3) says that (A + E )−1 − A−1 = −A−1E (A + E )−1 and so
by taking norms we find

‖(A + E )−1 − A−1‖p ≤ ‖A−1‖p‖E‖p‖(A + E )−1‖p

≤
‖A−1‖2

p‖E‖p
1− τ

.
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Exercises

Exercises 5.

1. Show ‖AB‖p ≤ ‖A‖p‖B‖p where 1 ≤ p ≤ ∞.

2. Let B be any submatrix of A. Show that ‖B‖p ≤ ‖A‖p.
3. Show that if D = diag(µ1, . . . , µk) ∈ Rm×n with k = min{m, n},

then ‖D‖p
4. Verify (7),(8), (9), (10), (11), (12) and (13).

5. Show that if 0 6= s ∈ Rn and E ∈ Rn×n, then∣∣∣∣∣∣∣∣E (1− ssT

sT s

)∣∣∣∣∣∣∣∣2
F

= ‖E‖2
F −
‖Es‖2

2

sT s
.
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Exercises

Exercises 6.

6. Suppose u ∈ Rm and v ∈ Rn. Show that if E = uvT then
‖E‖F = ‖E‖2 = ‖u‖2‖v‖2 and that ‖E‖∞ ≤ ‖u‖∞‖v‖1.

7. Suppose A ∈ Rm×n, y ∈ Rm, and 0 6= s ∈ Rn. Show that
E = (y − As)sT/sT s has the smallest 2-norm of all m-by-n matrices
E that satisfy (A + E )s = y .
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